
Phase transitions in hard-core Yukawa fluids: toward a theory of phase stability in protein

solutions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 A437

(http://iopscience.iop.org/0953-8984/12/8A/360)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/8A
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) A437–A442. Printed in the UK PII: S0953-8984(00)07686-4

Phase transitions in hard-core Yukawa fluids: toward a theory
of phase stability in protein solutions

C Caccamo†, G Pellicane and D Costa
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Università di
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Abstract. Thermodynamically self-consistent integral equation theories (TC-IETs) supple-
mented by a one-phase freezing criterion, and Monte Carlo simulations, are used to investigate the
thermodynamic and structural properties, as well as the phase diagram, of the hard-core Yukawa
fluid (HCYF). The attention is focused on rapidly decaying Yukawa tails, a potential regime suited
to model in an approximate manner the interaction between globular proteins in protein solutions.
TC-IETs are found to give a reasonably accurate description of the physical properties of the
HCYF in this limit. The position of the sublimation line relative to the liquid–vapour binodal line,
known to play a crucial role in the onset of crystallization in protein solutions, seems qualitatively
reproducible. We suggest on this basis the possibility of extending the use of TC-IET to more
realistic models of protein solutions, so as to take into account the true multicomponent nature of
these fluids, a physical situation whose description still challenges the currently available computer
simulation capabilities.

In recent years a considerable number of papers have appeared reporting theoretical and
simulation studies of model protein solutions (see [1–3] and references therein). The reason
for such interest essentially stems from the problem of protein crystallization, a phenomenon
whose predictability and control still seem far from being achieved [4].

Both theory and simulation rest however on a modelling of the system which is far
from being trivial; in fact, the interparticle interactions strongly depend on the instantaneous
configuration in which the macromolecules interact with the surrounding medium. It is
commonly accepted, however, that at least for globular proteins the effective interaction can be
roughly approximated as a strongly repulsive potential at short range plus a rapidly decaying
and attractive tail [1, 3]. Simulations of such a system have recently been performed by
various authors [3, 5, 6] and they have shown [3] that the most favourable conditions for
crystal nucleation and growth should occur when the sublimation line of the fluid passes a few
degrees above the (metastable) critical point [3, 7] of the liquid–vapour binodal line.

Now it is well known that the simulation of a system in which strong attractive forces are
present may be affected by ergodicity problems. Moreover, an extension of the simulation
approach to the more realistic case in which proteins, solute ions and water molecules are
present does not seem easily feasible due to the strong size asymmetries of the particle species
and to the (usually) high dilution of the macromolecules.
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Such a state of affairs makes desirable the availability of an accurate theoretical approach,
able to predict, even roughly, the phase behaviour of the system under consideration.

We have recently undertaken an extensive investigation of the performances of a number
of fluid-state theories for short-ranged potentials [8]. In this paper we report and discuss the
predictions of these theories that can be relevant for the phase behaviour of protein solutions. In
particular, we give results for the liquid–vapour binodal and for the freezing line of the system
as obtained through the adoption of a one-phase freezing criterion due to other authors [9]. We
also report the results of extensive Monte Carlo (MC) simulations which enable us to assess
the performances of the theories in the estimation of various thermodynamic and structural
quantities of interest.

We consider a fluid composed of hard-sphere particles of diameter σ , interacting through
an attractive Yukawa tail; the interparticle potential is thus written as

v(r) =
{

∞ r < σ

−σε exp[−λ(r − σ)]/r r � σ .
(1)

The properties of this model fluid are calculated within the modified hypernetted-
chain (MHNC) [10] approximation, and the generalized mean-spherical approximation
(GMSA) [11, 12]. We refer the reader to references [10–13] for the details of these two
theories. We merely recall that both the MHNC and the GMSA can be rendered thermo-
dynamically self-consistent by means of some adjustable parameters. In the MHNC case, we
use with this aim the hard-core diameter entering the Percus–Yevick bridge function (adopted
as an approximate bridge function) in such a way as to satisfy the requirement of equality
between the virial and fluctuation compressibility, namely(

β
∂P vir

∂ρ

)
T ,ρ

= 1 − ρc̃(q = 0). (2)

Here c̃(q = 0) is the q = 0 limit of the Fourier transform of c(r).
In the GMSA the consistency parameters K and z, entering the Yukawa function in terms

of which the GMSA closure for the direct correlation function

c(r) = −βv(r) + K exp[−z(r − σ)]/r r � σ (3)

is written, are used so as to satisfy condition (2) and also

−
(
∂F

∂V

)U

T

= P vir . (4)

The left-hand side of (4) is the pressure obtained from the energy route by differentiating the
Helmholtz free energy F; the latter is in turn obtained from the configurational energy Uex

through standard thermodynamic integration along an isochore path [14].
The solution of the GMSA under conditions (2) and (4) is obtained by us numerically.

The same theory has however also been solved in a semianalytic manner by other authors [15].
Finally, we shall make a comparison with some recent results obtained elsewhere [8,16,17]

in the self-consistent Ornstein–Zernike approximation (SCOZA) of Høye and Stell [18].
We shall measure the distance r in units of σ and the temperature T , the density ρ and the

pressure P in units of ε/kB , σ−3 and ε/σ 3, respectively.
Theoretical results for the excess energy per particle, the equation of state and the iso-

thermal compressibility are compared with the MC data at two different λ-values in figures 1
and 2.

The MHNC energies are quite accurate for both of the λ-values considered; the GMSA
energies are reasonably good at λ = 4 and show a 10% maximum discrepancy from the MC
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Figure 1. The excess internal energy per particle (in units of kBT ) versus the reduced temperature
(note the different vertical scales in the two panels). Symbols: circles: MHNC; triangles: GMSA;
squares: SCOZA; crosses: MC simulations.
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Figure 2. The equation of state (left) and compressibility (right) versus the reduced temperature.
The key to the symbols is as for figure 1.

data at the highest λ. The MHNC and GMSA equations of state and compressibilities, here
displayed for the most short-ranged potential case, are also within 10% of the MC result at
temperatures that are not too low. The SCOZA results for the equation of state are quantitatively
accurate at all temperatures considered. Other results, not reported here, show that at lower
λ-values all of the theories become practically quantitative.

Results for the structural function are shown in figure 3. The MHNC radial distribution
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Figure 3. The radial distribution function for the HCYF at λ = 9. For the thermodynamic state
point and symbols, see the body of the figure.

function compares quite well with the simulation result; the GMSA pattern somewhat
underestimates the positions of the main features, with a trend towards losing the phase at
large distances, but it appears on the whole qualitatively accurate. We have also calculated the
GMSA structure factor and find that this compares quite well with the MHNC S(q) except at
very small wave vectors.

We then studied the phase diagram of the HCYF. The liquid–vapour binodal line has been
determined by calculating the chemical potential at low and high density and by equating the
two values at equal temperatures according to standard procedures. We have also monitored
the behaviour of the multiparticle residual entropy [9], defined as

�s ≡ sex − s2 (5)

where sex is the excess entropy per particle of the system, in units of the Boltzmann constant,
and

s2 = −1

2
ρ

∫
{g(r) ln[g(r)] − g(r) + 1} dr. (6)

As originally found and discussed in reference [9], the vanishing of �s can act as a quite
sensitive indicator of the freezing transition, as we were able to specifically verify in our
previous work [8] at λ = 1.8 and 4. Here we focus our attention on the �s = 0 locus at
higher λ-values, where the position and appearance of this line closely resembles those of the
fluid–solid (sublimation) line obtained from simulation studies.

Results for the binodal line and the �s = 0 loci are reported in figures 4 and 5. We see
that at λ = 7 the GMSA binodal and the �s = 0 locus do correctly reproduce the location of
the Gibbs ensemble MC binodal relative to the sublimation line. The GMSA liquid–vapour
coexistence line is however only qualitatively good; moreover, the numerical algorithm used for
solution of this theory encounters some difficulties in the intermediate-density region where, in
fact, we have to interpolate our results. SCOZA results for the binodal are however available [8]
and look fairly good; such an accuracy seems useful for the investigation of the highest (λ = 9)
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Figure 4. The phase diagram for the HCYF at λ = 7. Liquid–gas coexistence: horizontal
bars: Gibbs ensemble MC results (reference [5]); continuous line: SCOZA; black circles:
GMSA. �s = 0 locus: triangles: GMSA; continuous line with squares: the sublimation line
of reference [5]; the dashed lines in the figure are guides for the eye.
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Figure 5. The phase diagram for the HCYF with λ = 9. Liquid–gas coexistence: continuous
line: SCOZA (reference [16]). �s = 0 locus: triangles, GMSA; continuous line with squares: the
sublimation line of reference [5]. Dashed lines in the figure are guides for the eye.

case, where no simulation results are available. As can be seen in figure 5 (and similarly in
figure 4), also at λ = 9, the SCOZA binodal [16] lies beneath the GMSA �s = 0 locus;
the latter, in turn, reproduces the sublimation–freezing line (obtained in reference [5] through
the Kofke integration method) fairly well over the density range in which the theory could be
solved numerically.

It appears from these results that the combination of information from the GMSA and the
SCOZA might be able to provide a description of the relative position of the phase coexistence
lines in the phase diagram of the HCYF in the regime of the very short-ranged potential.
This might prove useful for extending the present investigation to two-component models of
protein solutions, for which the theory should not encounter the difficulties typically met in
the simulation of fluids containing highly diluted and strongly asymmetric particle species.
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